Mass production of highly-porous graphene for high-performance supercapacitors
نویسندگان
چکیده
This study reports on a facile and economical method for the scalable synthesis of few-layered graphene sheets by the microwave-assisted functionalization. Herein, single-layered and few-layered graphene sheets were produced by dispersion and exfoliation of functionalized graphite in ethylene glycol. Thermal treatment was used to prepare pure graphene without functional groups, and the pure graphene was labeled as thermally-treated graphene (T-GR). The morphological and statistical studies about the distribution of the number of layers showed that more than 90% of the flakes of T-GR had less than two layers and about 84% of T-GR were single-layered. The microwave-assisted exfoliation approach presents us with a possibility for a mass production of graphene at low cost and great potentials in energy storage applications of graphene-based materials. Owing to unique surface chemistry, the T-GR demonstrates an excellent energy storage performance, and the electrochemical capacitance is much higher than that of the other carbon-based nanostructures. The nanoscopic porous morphology of the T-GR-based electrodes made a significant contribution in increasing the BET surface as well as the specific capacitance of graphene. T-GR, with a capacitance of 354.1 Fg(-1) at 5 mVs(-1) and 264 Fg(-1) at 100 mVs(-1), exhibits excellent performance as a supercapacitor.
منابع مشابه
Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملGraphene supercapacitor with both high power and energy density.
Supercapacitors, based on fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage using highly porous electrode materials. However, their low energy density excludes them from many potential applications that require both high energy density and high power density performances. Using a scalable nanoporous graphene synthesis method involving a...
متن کاملFlexible, free-standing and holey graphene paper for high power supercapacitors
Flexible supercapacitors based on bendable electrodes have aroused much interest for integration in clothing materials and portable electronic devices. However, simultaneous achievement of high areal energy and high power densities still presents a great challenge. Herein we report the fabrication of free-standing, flexible graphene papers suitable for high-performance flexible supercapacitors....
متن کاملControlled porous structures of graphene aerogels and their effect on supercapacitor performance.
The design and optimization of 3D graphene nanostructures are critically important since the properties of electrochemical energy storages such as supercapacitors can be dramatically enhanced by tunable porous channels. In this work, we have developed porous graphene aerogels from graphene suspensions obtained via electrochemical exfoliation and explored their application as supercapacitor elec...
متن کاملWet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes.
Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of "close pores" in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced "close pores" is essential for higher energy storage. Here we propose a wet-spinn...
متن کامل